organic compounds

12286 measured reflections

 $R_{\rm int} = 0.041$ 

2372 independent reflections

1946 reflections with  $I > 2\sigma(I)$ 

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

# Ethyl 3-nitro-4-(propylamino)benzoate

## Siti Marina Mohd. Maidin,<sup>a</sup> Aisyah Saad Abdul Rahim,<sup>a</sup>‡ Shafida Abdul Hamid,<sup>b</sup> Reza Kia<sup>c</sup> and Hoong-Kun Fun<sup>c</sup>\*

<sup>a</sup>School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, <sup>b</sup>School of Chemical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and <sup>c</sup>X-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia Correspondence e-mail: hkfun@usm.my

Received 8 July 2008; accepted 9 July 2008

Key indicators: single-crystal X-ray study; T = 100 K; mean  $\sigma$ (C–C) = 0.005 Å; R factor = 0.076; wR factor = 0.252; data-to-parameter ratio = 14.0.

In the title compound,  $C_{12}H_{16}N_2O_4$ , intramolecular N-H···O and C-H···O hydrogen bonds generate S(6) and S(5) ring motifs, respectively. The nitro group is almost coplanar with the benzene ring, forming a dihedral angle of 6.2  $(2)^{\circ}$ . In the crystal structure, neighbouring molecules are linked together by intermolecular N-H···O and O···O interactions. Of interest are the short intermolecular  $O \cdots O$  interactions which cause a stacking arrangement of the molecules along the aaxis.

#### **Related literature**

For related literature on hydrogen-bond motifs, see: Bernstein et al. (1995). For bond-length data, see: Allen et al. (1987). For related literature, see: Ishida et al. (2006); Vinodkumar et al. (2008). Rida et al. (2005); Harikrishnan et al. (2008); Moore et al. (2005).



#### **Experimental**

#### Crystal data

| $C_{12}H_{16}N_2O_4$            | $\gamma = 83.494 \ (4)^{\circ}$              |
|---------------------------------|----------------------------------------------|
| $M_r = 252.27$                  | V = 611.57 (8) Å <sup>3</sup>                |
| Triclinic, $P\overline{1}$      | Z = 2                                        |
| a = 4.4914 (4)  Å               | Mo $K\alpha$ radiation                       |
| b = 12.0828 (9) Å               | $\mu = 0.10 \text{ mm}^{-1}$                 |
| c = 12.8763 (9)  Å              | T = 100.0 (1) K                              |
| $\alpha = 62.494 \ (4)^{\circ}$ | $0.51 \times 0.26 \times 0.26 \ \mathrm{mm}$ |
| $\beta = 81.055 \ (4)^{\circ}$  |                                              |

‡ Additional correspondence author: e-mail: aisyah@usm.my.

#### Bruker SMART APEXII CCD area-detector diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2005) $T_{\min} = 0.949, \ T_{\max} = 0.974$

#### Refinement

| $R[F^2 > 2\sigma(F^2)] = 0.076$ | H atoms treated by a mixture of                            |
|---------------------------------|------------------------------------------------------------|
| $wR(F^2) = 0.252$               | independent and constrained                                |
| S = 1.17                        | refinement                                                 |
| 2372 reflections                | $\Delta \rho_{\rm max} = 0.47 \ {\rm e} \ {\rm \AA}^{-3}$  |
| 169 parameters                  | $\Delta \rho_{\rm min} = -0.33 \text{ e } \text{\AA}^{-3}$ |

#### Table 1

Selected interatomic distances (Å).

| O1···O1 <sup>i</sup>       | 2.914 (5)           | $O1{\cdots}O1^{ii}$ | 2.984 (5) |
|----------------------------|---------------------|---------------------|-----------|
| Symmetry codes: (i) $-x$ , | -y + 1, -z + 1; (ii | -x+1, -y+1, -z+1.   |           |

#### Table 2

Hydrogen-bond geometry (Å, °).

| $D - H \cdots A$                                         | D-H                          | $H \cdot \cdot \cdot A$      | $D \cdots A$                        | $D - \mathbf{H} \cdot \cdot \cdot A$ |
|----------------------------------------------------------|------------------------------|------------------------------|-------------------------------------|--------------------------------------|
| $N1-H1N1\cdotsO1$ $N1-H1N1\cdotsO1^{i}$ $C2-H2A\cdotsO2$ | 0.85 (5)<br>0.85 (5)<br>0.93 | 2.00 (6)<br>2.28 (5)<br>2.35 | 2.633 (5)<br>2.998 (4)<br>2.674 (4) | 131 (5)<br>141 (5)<br>100            |
|                                                          |                              |                              |                                     |                                      |

Symmetry code: (i) -x, -y + 1, -z + 1.

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2; data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003).

This work was funded by the Malaysian Government and Universiti Sains Malaysia (USM) under the USM Research University Funding (1001/PFARMASI/815026). HKF and RK thank the Malaysian Government and Universiti sains Malaysia for the Science Fund grant No. 305/PFIZIK/613312. RK thanks Universiti Sains Malaysia for a postdoctoral research fellowship.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AT2590).

#### References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-S19.
- Bernstein, J., Davis, R. E., Shimoni, L. & Chamg, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
- Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Harikrishnan, L. S., Kamau, M. G., Herpin, T. F., Morton, G. C., Liu, Y., Cooper, C. B., Salvati, M. E., Qiao, J. X., Wang, T. C., Adam, L. P., Taylor, D. S., Chen, A. Y. A., Yin, X., Seethala, R., Peterson, T. L. et al. (2008). Bioorg. Med Chem Lett 18 2640-2644.
- Ishida, T., Suzuki, T., Hirashima, S., Mizutani, K., Yoshida, A., Ando, I., Ikeda, S., Adachi, T. & Hashimoto, H. (2006). Bioorg. Med. Chem. Lett. 16, 1859-1863
- Moore, J. L., Taylor, S. M. & Soloshonok, V. A. (2005). Arkivoc (vi), 287-292

Rida, S. M., Ashour, F. A., El-Hawash, S. A. M., ElSemary, M. M., Badr, M. H. & Shalaby, M. A. (2005). *Eur. J. Med. Chem.* **40**, 949–959. Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Spek, A. L. (2003). J. Appl. Cryst. 36, 7–13.Vinodkumar, R., Vaidya, S. D., Kumar, B. V. S., Bhise, U. N., Bhirud, S. B. & Mashelkar, U. C. (2008). Eur. J. Med. Chem. 43, 986–995.

supplementary materials

Acta Cryst. (2008). E64, o1501-o1502 [doi:10.1107/S1600536808021314]

## Ethyl 3-nitro-4-(propylamino)benzoate

# S. M. Mohd. Maidin, A. S. Abdul Rahim, S. Abdul Hamid, R. Kia and H.-K. Fun

### Comment

The benzoic acid cores are precursors to many medicinally important heterocycles, *e.g.* benzimidazoles (Ishida *et al.*, 2006; Vinodkumar *et al.*, 2008) and benzoxazoles (Rida *et al.*, 2005; Harikrishnan *et al.*, 2008). Using Moore's procedure (Moore *et al.*, 2005) with some modifications, we attempted the derivatization of nitro benzoic acid precursors, which led to the synthesis of the title compound (I) bearing a propylamine motif. Its crystal structure has been determined and is presented here.

In the title compound (I), (Fig. 1), intramolecular N—H···O and C—H···O hydrogen bonds generate S(6) and S(5) ring motifs, respectively (Bernstein *et al.*, 1995). The bond lengths and angles are within normal ranges (Allen *et al.*, 1987). The nitro group is almost coplanar with the benzene ring with torsion angle of -6.4 (5)°. In the crystal structure (Fig. 2), neighbouring molecules are linked together by intermolecular N—H···O and O···O interactions. The interesting feature of the crystal structure is the short intermolecular O···O [symmetry codes: -*x*, 1 - *y*, 1 - *z*; 1 - *x*, 1 - *y*, 1 - *z*] interactions (Table 2) with distances of 2.914 (5) and 2.984 (5) Å which are shorter than the sum of the van der Waals radii of oxygen atoms. These interactions along with the intermolecular N—H···O interactions stack the molecules along the *a* axis.

#### **Experimental**

The title compound (I) was synthesized by adding *N*,*N*-diisopropyl ethylamine (DIPEA) (0.20 ml, 1.12 mmol) dropwise to a stirred solution of ethyl 4-fluoro-3-nitrobenzoate (200 mg, 0.93 mmol) in dry dichloromethane (10 ml). Propylamine (0.10 ml, 1.03 mmol) was added slowly with stirring, and then the mixture was stirred overnight at room temperature under N<sub>2</sub>. After completion of the reaction, the mixture was washed with 10% Na<sub>2</sub>CO<sub>3</sub> (10 ml). The aqueous layer was washed again with dichloromethane (3 x 15 ml). The organic fractions were pooled and dried over MgSO<sub>4</sub> and the solvent was removed by rotary evaporator. Recrystallization with hot hexane afforded the desired compound (I) as yellow needle-like crystals.

#### Refinement

The H-atom bound to N1 was located from the difference Fourier map and refined freely. The rest of the hydrogen atoms were positioned geometrically [C—H = 0.93–0.97 Å] and refined using a riding model with  $U_{iso} = 1.2$  or  $1.5U_{eq}(C)$ . A rotating-group model was used for the methyl groups.

#### **Figures**



Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atomic numbering. Intramolecular hydrogen bonds are drawn as dashed lines.



Fig. 2. The crystal packing of (I), showing stacking arrangement viewed down the *a*-axis. In-tramolecular and intermolecular interactions are drawn as dashed lines.

## Ethyl 3-nitro-4-(propylamino)benzoate

| $C_{12}H_{16}N_2O_4$            | Z = 2                                            |
|---------------------------------|--------------------------------------------------|
| $M_r = 252.27$                  | $F_{000} = 268$                                  |
| Triclinic, <i>P</i> T           | $D_{\rm x} = 1.370 {\rm ~Mg~m}^{-3}$             |
| Hall symbol: -P 1               | Mo K $\alpha$ radiation<br>$\lambda = 0.71073$ Å |
| <i>a</i> = 4.4914 (4) Å         | Cell parameters from 6896 reflections            |
| b = 12.0828 (9)  Å              | $\theta = 3.2 - 33.0^{\circ}$                    |
| c = 12.8763 (9)  Å              | $\mu = 0.10 \text{ mm}^{-1}$                     |
| $\alpha = 62.494 \ (4)^{\circ}$ | T = 100.0 (1)  K                                 |
| $\beta = 81.055 \ (4)^{\circ}$  | Needle, yellow                                   |
| $\gamma = 83.494 \ (4)^{\circ}$ | $0.51 \times 0.26 \times 0.26 \text{ mm}$        |
| $V = 611.57 (8) \text{ Å}^3$    |                                                  |

#### Data collection

| Bruker SMART APEXII CCD area-detector diffractometer        | 2372 independent reflections           |
|-------------------------------------------------------------|----------------------------------------|
| Radiation source: fine-focus sealed tube                    | 1946 reflections with $I > 2\sigma(I)$ |
| Monochromator: graphite                                     | $R_{\rm int} = 0.041$                  |
| T = 100.0(1)  K                                             | $\theta_{\rm max} = 26.0^{\circ}$      |
| $\varphi$ and $\omega$ scans                                | $\theta_{\min} = 1.8^{\circ}$          |
| Absorption correction: multi-scan<br>(SADABS; Bruker, 2005) | $h = -5 \rightarrow 5$                 |
| $T_{\min} = 0.949, \ T_{\max} = 0.974$                      | $k = -14 \rightarrow 14$               |
| 12286 measured reflections                                  | $l = -15 \rightarrow 15$               |

## Refinement

| Refinement on $F^2$             | Secondary atom site location: difference Fourier map                               |
|---------------------------------|------------------------------------------------------------------------------------|
| Least-squares matrix: full      | Hydrogen site location: inferred from neighbouring sites                           |
| $R[F^2 > 2\sigma(F^2)] = 0.076$ | H atoms treated by a mixture of independent and constrained refinement             |
| $wR(F^2) = 0.252$               | $w = 1/[\sigma^2(F_0^2) + (0.1098P)^2 + 1.609P]$<br>where $P = (F_0^2 + 2F_c^2)/3$ |
| <i>S</i> = 1.17                 | $(\Delta/\sigma)_{max} < 0.001$                                                    |
| 2372 reflections                | $\Delta \rho_{max} = 0.47 \text{ e } \text{\AA}^{-3}$                              |
| 169 parameters                  | $\Delta \rho_{min} = -0.33 \text{ e} \text{ Å}^{-3}$                               |

Primary atom site location: structure-invariant direct Extinction correction: none

#### Special details

Experimental. The low-temperature data was collected with the Oxford Cyrosystem Cobra low-temperature attachment.

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on  $F^2$ , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2$ . The threshold expression of  $F^2 > \sigma(F^2)$  is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

|      | x           | У           | Ζ          | $U_{\rm iso}$ */ $U_{\rm eq}$ |
|------|-------------|-------------|------------|-------------------------------|
| 01   | 0.2464 (7)  | 0.4136 (3)  | 0.5558 (2) | 0.0326 (7)                    |
| O2   | 0.5971 (6)  | 0.2725 (2)  | 0.6301 (2) | 0.0316 (7)                    |
| O3   | 0.8766 (6)  | 0.1455 (2)  | 1.0099 (2) | 0.0239 (6)                    |
| O4   | 0.7178 (6)  | 0.2578 (2)  | 1.1092 (2) | 0.0272 (6)                    |
| N1   | 0.0274 (7)  | 0.5600 (3)  | 0.6530 (3) | 0.0217 (7)                    |
| N2   | 0.4117 (7)  | 0.3535 (3)  | 0.6346 (3) | 0.0228 (7)                    |
| C1   | 0.3823 (8)  | 0.3799 (3)  | 0.7345 (3) | 0.0195 (7)                    |
| C2   | 0.5528 (8)  | 0.3013 (3)  | 0.8258 (3) | 0.0200 (7)                    |
| H2A  | 0.6775      | 0.2374      | 0.8192     | 0.024*                        |
| C3   | 0.5379 (8)  | 0.3177 (3)  | 0.9255 (3) | 0.0200 (7)                    |
| C4   | 0.3490 (8)  | 0.4159 (3)  | 0.9327 (3) | 0.0210 (7)                    |
| H4A  | 0.3358      | 0.4274      | 0.9999     | 0.025*                        |
| C5   | 0.1849 (8)  | 0.4945 (3)  | 0.8436 (3) | 0.0215 (7)                    |
| H5A  | 0.0650      | 0.5589      | 0.8512     | 0.026*                        |
| C6   | 0.1917 (8)  | 0.4809 (3)  | 0.7389 (3) | 0.0203 (7)                    |
| C7   | -0.1636 (8) | 0.6655 (3)  | 0.6552 (3) | 0.0223 (7)                    |
| H7A  | -0.2755     | 0.6388      | 0.7330     | 0.027*                        |
| H7B  | -0.3086     | 0.6895      | 0.5991     | 0.027*                        |
| C8   | 0.0108 (8)  | 0.7792 (3)  | 0.6262 (3) | 0.0238 (8)                    |
| H8A  | 0.1518      | 0.7572      | 0.6834     | 0.029*                        |
| H8B  | 0.1251      | 0.8065      | 0.5488     | 0.029*                        |
| С9   | -0.2061 (9) | 0.8850 (3)  | 0.6280 (3) | 0.0281 (8)                    |
| H9A  | -0.0932     | 0.9532      | 0.6169     | 0.042*                        |
| H9B  | -0.3304     | 0.8557      | 0.7025     | 0.042*                        |
| Н9С  | -0.3313     | 0.9126      | 0.5657     | 0.042*                        |
| C10  | 0.7166 (8)  | 0.2397 (3)  | 1.0240 (3) | 0.0212 (7)                    |
| C11  | 1.0559 (8)  | 0.0633 (3)  | 1.1042 (3) | 0.0253 (8)                    |
| H11A | 1.1345      | 0.1115      | 1.1358     | 0.030*                        |
| H11B | 1.2257      | 0.0261      | 1.0728     | 0.030*                        |
| C12  | 0.8678 (9)  | -0.0386 (3) | 1.2015 (3) | 0.0292 (8)                    |
|      |             |             |            |                               |

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(A^2)$ 

# supplementary materials

| H12A | 0.9926     | -0.0943   | 1.2607    | 0.044*      |
|------|------------|-----------|-----------|-------------|
| H12B | 0.7837     | -0.0843   | 1.1696    | 0.044*      |
| H12C | 0.7077     | -0.0020   | 1.2361    | 0.044*      |
| H1N1 | 0.031 (11) | 0.547 (4) | 0.593 (5) | 0.038 (13)* |

Atomic displacement parameters  $(\text{\AA}^2)$ 

|     | $U^{11}$    | $U^{22}$    | $U^{33}$    | $U^{12}$     | $U^{13}$     | $U^{23}$     |
|-----|-------------|-------------|-------------|--------------|--------------|--------------|
| 01  | 0.0432 (16) | 0.0348 (15) | 0.0271 (14) | 0.0142 (12)  | -0.0198 (12) | -0.0189 (12) |
| O2  | 0.0420 (16) | 0.0317 (14) | 0.0240 (14) | 0.0155 (12)  | -0.0099 (11) | -0.0171 (11) |
| O3  | 0.0281 (13) | 0.0254 (13) | 0.0187 (12) | 0.0036 (10)  | -0.0072 (10) | -0.0099 (10) |
| O4  | 0.0372 (15) | 0.0284 (13) | 0.0185 (12) | 0.0009 (11)  | -0.0075 (10) | -0.0120 (11) |
| N1  | 0.0265 (16) | 0.0218 (14) | 0.0198 (15) | 0.0033 (12)  | -0.0064 (12) | -0.0117 (12) |
| N2  | 0.0290 (16) | 0.0206 (14) | 0.0189 (14) | 0.0030 (12)  | -0.0069 (12) | -0.0087 (12) |
| C1  | 0.0248 (17) | 0.0185 (16) | 0.0145 (16) | -0.0023 (13) | -0.0022 (13) | -0.0065 (13) |
| C2  | 0.0232 (17) | 0.0182 (15) | 0.0186 (16) | -0.0010 (13) | -0.0024 (13) | -0.0084 (13) |
| C3  | 0.0211 (17) | 0.0211 (16) | 0.0170 (16) | -0.0035 (13) | -0.0014 (13) | -0.0077 (13) |
| C4  | 0.0275 (18) | 0.0212 (16) | 0.0143 (15) | -0.0045 (13) | -0.0003 (13) | -0.0080 (13) |
| C5  | 0.0228 (17) | 0.0216 (16) | 0.0201 (17) | -0.0017 (13) | -0.0005 (13) | -0.0100 (14) |
| C6  | 0.0200 (16) | 0.0200 (16) | 0.0199 (17) | -0.0032 (13) | -0.0015 (13) | -0.0080 (13) |
| C7  | 0.0235 (17) | 0.0215 (17) | 0.0219 (17) | 0.0052 (13)  | -0.0060 (13) | -0.0101 (14) |
| C8  | 0.0248 (18) | 0.0235 (17) | 0.0215 (17) | 0.0016 (14)  | -0.0030 (13) | -0.0094 (14) |
| C9  | 0.033 (2)   | 0.0240 (18) | 0.0261 (19) | 0.0008 (15)  | -0.0019 (15) | -0.0112 (15) |
| C10 | 0.0228 (17) | 0.0204 (16) | 0.0188 (16) | -0.0036 (13) | -0.0012 (13) | -0.0074 (13) |
| C11 | 0.0249 (18) | 0.0290 (18) | 0.0208 (17) | 0.0048 (14)  | -0.0080 (14) | -0.0101 (15) |
| C12 | 0.034 (2)   | 0.0262 (18) | 0.0247 (19) | 0.0051 (15)  | -0.0066 (15) | -0.0101 (15) |

# Geometric parameters (Å, °)

| O1—N2              | 1.241 (4) | C5—C6               | 1.426 (5) |
|--------------------|-----------|---------------------|-----------|
| O2—N2              | 1.228 (4) | C5—H5A              | 0.9300    |
| O3—C10             | 1.345 (4) | С7—С8               | 1.524 (5) |
| O3—C11             | 1.455 (4) | С7—Н7А              | 0.9700    |
| O4—C10             | 1.214 (4) | С7—Н7В              | 0.9700    |
| N1—C6              | 1.342 (4) | C8—C9               | 1.523 (5) |
| N1—C7              | 1.462 (4) | C8—H8A              | 0.9700    |
| N1—H1N1            | 0.86 (5)  | C8—H8B              | 0.9700    |
| N2—C1              | 1.445 (4) | С9—Н9А              | 0.9600    |
| C1—C2              | 1.398 (5) | С9—Н9В              | 0.9600    |
| C1—C6              | 1.428 (5) | С9—Н9С              | 0.9600    |
| C2—C3              | 1.378 (5) | C11—C12             | 1.511 (5) |
| C2—H2A             | 0.9300    | C11—H11A            | 0.9700    |
| C3—C4              | 1.409 (5) | C11—H11B            | 0.9700    |
| C3—C10             | 1.477 (5) | C12—H12A            | 0.9600    |
| C4—C5              | 1.364 (5) | C12—H12B            | 0.9600    |
| C4—H4A             | 0.9300    | C12—H12C            | 0.9600    |
| 01…01 <sup>i</sup> | 2.914 (5) | 01…01 <sup>ii</sup> | 2.984 (5) |
| C10—O3—C11         | 116.1 (3) | С8—С7—Н7В           | 108.8     |

| C6—N1—C7     | 125.0 (3)  | H7A—C7—H7B     | 107.7      |
|--------------|------------|----------------|------------|
| C6—N1—H1N1   | 118 (3)    | C9—C8—C7       | 110.2 (3)  |
| C7—N1—H1N1   | 117 (3)    | С9—С8—Н8А      | 109.6      |
| O2—N2—O1     | 121.8 (3)  | С7—С8—Н8А      | 109.6      |
| O2—N2—C1     | 119.5 (3)  | С9—С8—Н8В      | 109.6      |
| O1—N2—C1     | 118.6 (3)  | С7—С8—Н8В      | 109.6      |
| C2—C1—C6     | 122.1 (3)  | H8A—C8—H8B     | 108.1      |
| C2           | 116.1 (3)  | С8—С9—Н9А      | 109.5      |
| C6—C1—N2     | 121.8 (3)  | С8—С9—Н9В      | 109.5      |
| C3—C2—C1     | 120.6 (3)  | Н9А—С9—Н9В     | 109.5      |
| C3—C2—H2A    | 119.7      | С8—С9—Н9С      | 109.5      |
| C1—C2—H2A    | 119.7      | Н9А—С9—Н9С     | 109.5      |
| C2—C3—C4     | 118.4 (3)  | Н9В—С9—Н9С     | 109.5      |
| C2—C3—C10    | 123.3 (3)  | O4—C10—O3      | 123.5 (3)  |
| C4—C3—C10    | 118.2 (3)  | O4—C10—C3      | 123.7 (3)  |
| C5—C4—C3     | 121.6 (3)  | O3—C10—C3      | 112.8 (3)  |
| C5—C4—H4A    | 119.2      | O3—C11—C12     | 110.8 (3)  |
| C3—C4—H4A    | 119.2      | O3—C11—H11A    | 109.5      |
| C4—C5—C6     | 122.0 (3)  | C12—C11—H11A   | 109.5      |
| С4—С5—Н5А    | 119.0      | O3—C11—H11B    | 109.5      |
| С6—С5—Н5А    | 119.0      | C12—C11—H11B   | 109.5      |
| N1—C6—C5     | 120.4 (3)  | H11A—C11—H11B  | 108.1      |
| N1—C6—C1     | 124.4 (3)  | C11—C12—H12A   | 109.5      |
| C5—C6—C1     | 115.2 (3)  | C11—C12—H12B   | 109.5      |
| N1—C7—C8     | 113.8 (3)  | H12A—C12—H12B  | 109.5      |
| N1—C7—H7A    | 108.8      | C11—C12—H12C   | 109.5      |
| С8—С7—Н7А    | 108.8      | H12A—C12—H12C  | 109.5      |
| N1—C7—H7B    | 108.8      | H12B-C12-H12C  | 109.5      |
| O2—N2—C1—C2  | -5.7 (5)   | C4—C5—C6—C1    | -0.1(5)    |
| O1—N2—C1—C2  | 174.0 (3)  | C2-C1-C6-N1    | 178.9 (3)  |
| O2—N2—C1—C6  | 173.9 (3)  | N2-C1-C6-N1    | -0.5 (5)   |
| O1—N2—C1—C6  | -6.5 (5)   | C2—C1—C6—C5    | -0.9 (5)   |
| C6—C1—C2—C3  | 1.2 (5)    | N2-C1-C6-C5    | 179.6 (3)  |
| N2—C1—C2—C3  | -179.2 (3) | C6—N1—C7—C8    | 78.2 (4)   |
| C1—C2—C3—C4  | -0.5 (5)   | N1—C7—C8—C9    | 178.8 (3)  |
| C1—C2—C3—C10 | -178.7 (3) | C11—O3—C10—O4  | 0.3 (5)    |
| C2—C3—C4—C5  | -0.5 (5)   | C11—O3—C10—C3  | -179.2 (3) |
| C10—C3—C4—C5 | 177.8 (3)  | C2—C3—C10—O4   | 175.7 (3)  |
| C3—C4—C5—C6  | 0.9 (5)    | C4—C3—C10—O4   | -2.5 (5)   |
| C7—N1—C6—C5  | 1.2 (5)    | C2—C3—C10—O3   | -4.8 (5)   |
| C7—N1—C6—C1  | -178.6 (3) | C4—C3—C10—O3   | 177.0 (3)  |
| C4C5C6N1     | 180.0 (3)  | C10—O3—C11—C12 | 85.5 (4)   |

Symmetry codes: (i) -*x*, -*y*+1, -*z*+1; (ii) -*x*+1, -*y*+1, -*z*+1.

# Hydrogen-bond geometry (Å, °)

| D—H···A                   | <i>D</i> —Н | H…A      | $D \cdots A$ | D—H··· $A$ |
|---------------------------|-------------|----------|--------------|------------|
| N1—H1N1…O1                | 0.85 (5)    | 2.00 (6) | 2.633 (5)    | 131 (5)    |
| N1—H1N1···O1 <sup>i</sup> | 0.85 (5)    | 2.28 (5) | 2.998 (4)    | 141 (5)    |

# supplementary materials

| C2—H2A…O2                                    | 0.93 | 2.35 | 2.674 (4) | 100 |
|----------------------------------------------|------|------|-----------|-----|
| Symmetry codes: (i) $-x$ , $-y+1$ , $-z+1$ . |      |      |           |     |
|                                              |      |      |           |     |

Fig. 1





Fig. 2